Meta-analysis of Outcomes of Transradial versus Transfemoral Access in Patients with Prior Coronary Artery Bypass Graft Surgery Undergoing Coronary Angiography and/or Percutaneous Coronary Intervention

Noman Lateef, MD¹, Azka Latif, MD², Muhammad Junaid Ahsan, MD³, Waiel Abusnina, MD², Kristen Brown, MD¹, Mohsin Mirza, MD², Mamas Mamas, MBBch⁴, Deepak L., Bhatt, MD, MPH⁵, Poonam Velagapudi, MD, MS¹

- 1. University of Nebraska Medical Center, Omaha, NE
- 2. Creighton University School of Medicine, Omaha, NE
- 3. Mercy One, Iowa Heart Center, Des Moines, Iowa
- 4. Keele University, UK
- 5. Brigham and Women's Hospital, Harvard Medical School, Boston, MA

Background

Transradial access (TRA) for coronary angiography (CA) and percutaneous coronary intervention (PCI) has been shown to have better outcomes compared with transfemoral access (TFA) across a broad spectrum of patients and presentations. However, patients with prior coronary artery bypass graft (CABG) remain under-represented in these studies. We performed a meta-analysis to compare the procedural and clinical outcomes of TRA versus TFA in patients with prior CABG undergoing CA and/or PCI.

Methods

We searched PubMed, MEDLINE, Scopus, Embase, and Google Scholar from inception to September, 2021 for studies (observational and randomized) that compared procedural and clinical outcomes of TRA and TFA in patients with prior CABG undergoing CA and/or PCI. Data from all included studies were combined to calculate weighted mean differences (WMD) and 95% confidence interval (CI) for continuous outcomes, whereas risk ratio (RR) and 95% CI were calculated for dichotomous outcomes.

Results

Twenty studies (1 randomized, 19 observational) with 159,657 patients in TRA and 1,182,204 patients in TFA group were included. Compared with TFA, TRA was associated with lower contrast media use (WMD -8.24 ml, Cl - 14.1 to -2.73, p=0.004), access-site complications (RR 0.32, Cl 0.24 to 0.42, p<0.001), in-hospital mortality (RR 0.57, Cl 0.41 to 0.79, p<0.001) and 1-year mortality (RR 0.72, Cl 0.62 to 0.82, p<0.001); with no difference in procedure time (WMD 0.94 minutes, Cl -2.18 to 4.05, p=0.56), fluoroscopy time (WMD 0.25 minutes, Cl -2.06 to 2.56, p=0.083); or radiation exposure (WMD -0.06 Gy, Cl -0.14 to 0.03, p=0.2) in patients with prior CABG undergoing CA and/or PCI. Sensitivity analyses excluding studies or subgroup of studies that reported outcomes in patients undergoing CA alone showed similar findings. TRA was associated with lower contrast media use (WMD -11.6 ml, -16.5 to -6.7, p<0.001), and access site complications (RR 0.3, Cl 0.25 to 0.45, p<0.001); with no difference in procedure time to reduce the time (WMD -7.2, Cl -22 to 7.7, p=0.35) and fluoroscopy times (WMD 0.7, Cl -0.07 to 1.5, p=0.07) compared with TFA.

Conclusion

Compared with TFA, TRA was associated with lower access site complications, contrast use, and 1-year mortality without an increase in procedure or fluoroscopy time in patients with prior CABG undergoing CA and/or PCI.

CONTRAST MEDIA USE

	TRA TFA							Mean Difference		Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI				
Ziakas et al. 2005	223	91	132	234	91	202	5.4%	-11.00 [-30.96, 8.96]	2005	· · · · · · · · · · · · · · · · · · ·				
Sanmartin et al. 2006	179.6	64.4	151	194.5	72.3	153	7.4%	-14.90 [-30.29, 0.49]	2006	i —•				
Rathore et al. 2009	357	174	51	346	157	64	0.8%	11.00 [-50.32, 72.32]	2009	· · · · · · · · · · · · · · · · · · ·				
Michael et al. 2013	171	72	64	142	39	64	5.3%	29.00 [8.94, 49.06]	2013	·				
Dai et al. 2017	201.5	45.5	93	221.5	49.1	91	8.3%	-20.00 [-33.69, -6.31]	2017					
Balaban et al .2016	59.6	11.9	268	59	9.31	174	15.6%	0.60 [-1.39, 2.59]	2018	+ · · · · · · · · · · · · · · · · · · ·				
israeli et al. 2019	203	62	863	224	99	618	11.0%	-21.00 [-30.53, -11.47]	2019					
Gomes et al. 2019	70	34	155	72	40	225	12.5%	-2.00 [-9.48, 5.48]	2019	· -+				
Hirzallah et al. 2019	122.8	59.1	216	136.3	74.4	1937	11.7%	-13.50 [-22.05, -4.95]	2019					
Januszek et al. 2020	204.7	96.9	17609	213	99.6	15154	15.6%	-8.30 [-10.44, -6.16]	2020	•				
Stephan et al. 2021	195.2	96.2	306	216.5	101.8	221	6.5%	-21.30 [-38.51, -4.09]	2021					
Total (95% CI)			19908			18903	100.0%	-8.42 [-14.11, -2.73]		•				
Heterogeneity: Tau ² = ! Test for overall effect: 2	52.91; C 2 = 2.90	-100 -50 0 50 100 Favours [TRA] Favours [TFA]												

ACCESS-SITE COMPLICATIONS

	TRA		TFA			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	r M-H, Random, 95% Cl
Zlakas et al. 2005	1	132	4	202	1.5%	0.38 [0.04, 3.39]	2005	i <u> </u>
Sanmartin et al. 2006	1	151	1	153	1.0%	1.01 [0.06, 16.05]	2006	ì — — — — — — — — — — — — — — — — — — —
Burzotta et al. 2008	0	20	2	40	0.6%	0.39 [0.02, 7.77]	2008	i
Rathore et al. 2009	2	51	10	64	3.4%	0.25 [0.06, 1.09]	2009	• • • • • • • • • • • • • • • • • • • •
Bundhoo et al. 2012	0	97	3	208	0.8%	0.30 [0.02, 5.84]	2012	·
Han et al. 2012	2	66	6	56	3.2%	0.21 [0.05, 0.93]	2012	
Michael et al. 2013	2	64	2	64	2.0%	1.00 [0.15, 6.88]	2013	
He et al. 2015	6	113	32	291	13.3×	0.64 [0.31, 1.35]	2015	• • +
Dai et al. 2017	2	93	2	91	2.0%	0.98 [0.14, 6.60]	2017	
Balaban et al .2016	6	268	16	174	10.7%	0.32 [0.14, 0.74]	2018	i
Kinnaird et al. 2016	23	7553	131	11661	37.6%	0.28 [0.16, 0.43]	2018	i —
Rychlik et al. 2016	3	1152	19	1126	5.0%	0.15 [0.05, 0.52]	2018	i —•
Gomes et al. 2019	1	155	6	225	1.7%	0.24 [0.03, 1.99]	2019	I
Hirzallah et al. 2019	0	216	19	1937	0.9%	0.23 [0.01, 3.78]	2019	·
israeli et al. 2019	6	863	20	618	11.1%	0.29 [0.13, 0.65]	2019	Ⅰ ———
Groenland et al. 2021	3	458	18	603	5.0%	0.22 [0.07, 0.74]	2021	
Total (95% CI)		11454		17733	100.0%	0.32 [0.24, 0.42]		◆
Total events	64		293					
Heterogeneity: $Tau^2 = 0$	0.00; Cht ²	= 9.61,						
Test for overall effect: Z	= 8.23 (P	< 0.00	001)					0.01 0.1 1 10 100 [TRA] [TFA]

IN-HOSPITAL MORTALITY

	T	AS	т	FA		Risk Ratio	Risk Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		М-	H, Random, 95%	ί CI	
Ziakas et al. 2005	0	132	1	202	1.1%	0.51 [0.02, 12.40]	2005					
Rathore et al. 2009	0	51	1	64	1.1%	0.42 [0.02, 10.02]	2009					
Han et al. 2012	1	66	1	56	1.4%	0.82 [0.05, 12.87]	2012					
He et al. 2015	0	113	1	291	1.1%	0.85 [0.04, 20.81]	2015	-				
Dai et al. 2017	0	93	0	91		Not estimable	2017					
Kinnaird et al. 2018	43	7553	121	11661	25.7%	0.56 [0.40, 0.79]	2018					
israeli et al. 2019	0	863	3	616	1.2%	0.10 [0.01, 1.98]	2019	←				
Januszek et al. 2020	262	17609	530	15154	33.5X	0.46 [0.40, 0.53]	2020			-		
Manly et al. 2021	679	130216	8168	1146642	35.0X	0.73 [0.68, 0.79]	2021			•		
Groenland et al. 2021	0	469	0	615		Not estimable	2021					
Total (95% CI)		157167		1177814	100.0%	0.57 [0.41, 0.79]				•		
Total events	1005		8826									
Heterogeneity: $Tau^2 = 0$.08; Chl ²	= 34.69,	df = 7 (P < 0.0001	×							
Test for overall effect: Z	= 3.35 (P = 0.000)6)				Ų.ŲI	Ų.1	[TRA] [TFA]	10	TŬŬ	

1-YEAR MORTALITY

RADIATION EXPOSORE

